1,577 research outputs found

    FUSE Observations of the Dwarf Nova SW UMa During Quiescence

    Full text link
    We present spectroscopic observations of the short-period cataclysmic variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite while the system was in quiescence. The data include the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s) components. The narrow O VI emission lines exhibit unusual double-peaked and redshifted profiles. We attribute the source of this emission to a cooling flow onto the surface of the white dwarf primary. The broad O VI emission most likely originates in a thin, photoionized surface layer on the accretion disk. We searched for emission from H_2 at 1050 and 1100 A, motivated by the expectation that the bulk of the quiescent accretion disk is in the form of cool, molecular gas. If H_2 is present, then our limits on the fluxes of the H_2 lines are consistent with the presence of a surface layer of atomic H that shields the interior of the disk. These results may indicate that accretion operates primarily in the surface layers of the disk in SW UMa. We also investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap

    The value of closed-circuit rebreathers for biological research

    Full text link
    Closed-circuit rebreathers have been used for underwater biological research since the late 1960s, but have only started to gain broader application within scientific diving organizations within the past two decades. Rebreathers offer certain specific advantages for such research, especially for research involving behavior and surveys that depend on unobtrusive observers or for a stealthy approach to wildlife for capture and tagging, research that benefits from extended durations underwater, and operations requiring access to relatively deep (>50 m) environments (especially in remote locations). Although many institutions have been slow to adopt rebreather technology within their diving programs, recent developments in rebreather technology that improve safety, standardize training requirements, and reduce costs of equipment and maintenance, will likely result in a trend of increasing utilization of rebreathers for underwater biological research.Published versio

    On the Dynamic Stability of Cool Supergiant Atmospheres

    Full text link
    We have developed a new formalism to compute the thermodynamic coefficient Gamma1 in the theory of stellar and atmospheric stability. We generalize the classical derivation of the first adiabatic index, which is based on the assumption of thermal ionization and equilibrium between gas and radiation temperature, towards an expression which incorporates photo-ionization due to radiation with a temperature T_rad different from the local kinetic gas temperature.Our formalism considers the important non-LTE conditions in the extended atmospheres of supergiant stars. An application to the Kurucz grid of cool supergiant atmospheres demonstrates that models with T_rad =~ T_eff between 6500 K and 7500 K become most unstable against dynamic perturbations, according to Ledoux' stability integral . This results from Gamma1 and acquiring very low values, below 4/3, throughout the entire stellar atmosphere, which causes very high gas compression ratios around these effective temperatures. Based on detailed NLTE-calculations, we discuss atmospheric instability of pulsating massive yellow supergiants, like the hypergiant rho Cas (Ia+), which exist in the extension of the Cepheid instability strip, near the Eddington luminosity limit.Comment: 54 pages including figures and the Appendix, 7 figures, Accepted for The Astrophysical Journal, Main Journal, 558, Sept. 200

    Tunable Depletion Potentials Driven By Shape Variation Of Surfactant Micelles

    Get PDF
    Depletion interaction potentials between micron-sized colloidal particles are induced by nanometer-scale surfactant micelles composed of hexaethylene glycol monododecyl ether (C12E6), and they are measured by video microscopy. The strength and range of the depletion interaction is revealed to arise from variations in shape anisotropy of the surfactant micelles. This shape anisotropy increases with increasing sample temperature. By fitting the colloidal interaction potentials to theoretical models, we extract micelle length and shape anisotropy as a function of temperature. This work introduces shape anisotropy tuning as a means to control interparticle interactions in colloidal suspensions, and it shows how the interparticle depletion potentials of micron-scale objects can be employed to probe the shape and size of surrounding macromolecules at the nanoscale

    Cerebellar infarction requiring surgical decompression in patient with COVID 19 pathological analysis and brief review

    Get PDF
    © 2020 The Authors Background: This report and literature review describes a case of a COVID-19 patient who suffered a cerebellar stroke requiring neurosurgical decompression. This is the first reported case of a sub-occipital craniectomy with brain biopsy in a COVID-19 patient showing leptomeningeal venous intimal inflammation. Clinical description: The patient is a 48-year-old SARS-COV-2 positive male with multiple comorbidities, who presented with fevers and respiratory symptoms, and imaging consistent with multifocal pneumonia. On day 5 of admission, the patient had sudden change in mental status, increased C-Reactive Protein, ferritin and elevated Interleukin-6 levels. Head CT showed cerebral infarction from vertebral artery occlusion. Given subsequent rapid neurologic decline from cerebellar swelling and mass effect on his brainstem emergent neurosurgical intervention was performed. Brain biopsy found a vein with small organizing thrombus adjacent to focally proliferative intima with focal intimal neutrophils. Conclusion: A young man with COVID-19 and suspected immune dysregulation, complicated by a large cerebrovascular ischemic stroke secondary to vertebral artery thrombosis requiring emergent neurosurgical intervention for decompression with improved neurological outcomes. Brain biopsy was suggestive of inflammation from thrombosed vessel, and neutrophilic infiltration of cerebellar tissue

    A VLT/FLAMES survey for massive binaries in Westerlund 1: I. First observations of luminous evolved stars

    Get PDF
    Aims. Multiwavelength observations of the young massive cluster Westerlund 1 have revealed evidence for a large number of OB supergiant and Wolf-Rayet binaries. However, in most cases these findings are based on the detection of secondary binary characteristics, such as hard X-ray emission and/or non-thermal radio spectra and hence provide little information on binary properties such as mass ratio and orbital period. To overcome this shortcoming we have initiated a long temporal baseline, multi-epoch radial velocity survey that will provide the first direct constraints on these parameters.Methods. VLT/FLAMES+GIRAFFE observations of Wd1 were made on seven epochs from late-June to early-September 2008, covering ~35 confirmed members of Wd1 and ~70 photometrically-selected candidate members. Each target was observed on a minimum of three epochs, with brighter cluster members observed on five (or, in a few cases, seven) occasions. Individual spectra cover the 8484–9001 Å range, and strong Paschen-series absorption lines are used to measure radial velocity changes in order to identify candidate binary systems for follow-up study.Results. This study presents first-epoch results from twenty of the most luminous supergiant stars in Wd1. Four new OB supergiant members of Wd1 are identified, while statistically significant radial velocity changes are detected in ~60% of the targets. W43a is identified as a short-period binary, while W234 and the newly-identified cluster member W3003 are probable binaries and W2a is a strong binary candidate. The cool hypergiants W243 and W265 display photospheric pulsations, while a number of early-mid B supergiants display significant radial velocity changes of ~15–25 km s-1 that we cannot distinguish between orbital or photospheric motion in our initial short-baseline survey. When combined with existing observations, we find 30% of our sample to be binary (6/20) while additional candidate binaries support a binary fraction amongst Wd1 supergiants in excess of ~40%, a figure that is likely to increase as further data become available

    On the CO Near-IR Band and the Line Splitting Phenomenon in the Yellow Hypergiant Rho Cassiopeiae

    Get PDF
    We report on multi-epoch optical and near-infrared spectroscopy around the first overtone ro-vibrational band of CO in the pulsating yellow hypergiant Rho Cas, one of the most massive stars in the Galaxy and a candidate SN II progenitor. We argue that the double cores of the CO absorption lines, that have previously been attributed to separate circumstellar shells expelled during its recurrent outbursts, result in fact from a superposition of a wide absorption line and a narrow central emission line. The CO line doubling returns over subsequent pulsation cycles, where the superposed line emission assumes its largest intensity near phases of maximum light. We find that the morphology and behavior of the CO band closely resemble the remarkable "line-splitting phenomenon" also observed in optical low-excitation atomic lines. Based on radiative transport calculations we present a simplified model of the near-IR CO emission emerging from cooler atmospheric layers in the immediate vicinity of the photosphere. We speculate that the kinetic temperature minimum in our model results from a periodical pulsation-driven shock wave. We further discuss a number of alternative explanations for the origin of the ubiquitous emission line spectrum, possibly due to a quasi-chromosphere or a steady shock wave at the interface of a fast expanding wind and the ISM. We present a number of interesting spectroscopic similarities between Rho Cas and other types of cool variable supergiants such as the RV Tau and R CrB stars. We further propose a possibly common mechanism for the enigmatic outburst behavior of these luminous pulsating cool stars.Comment: accepted to ApJ; 3 color fig

    A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars

    Full text link
    FUSE ultraviolet spectra of 8 giant and supergiant stars reveal that high temperature (3 X 10^5 K) atmospheres are common in luminous cool stars and extend across the color-magnitude diagram from Alpha Car (F0 II) to the cool giant Alpha Tau (K5 III). Emission present in these spectra includes chromospheric H-Lyman Beta, Fe II, C I, and transition region lines of C III, O VI, Si III, Si IV. Emission lines of Fe XVIII and Fe XIX signaling temperatures of ~10^7 K and coronal material are found in the most active stars, Beta Cet and 31 Com. A short-term flux variation, perhaps a flare, was detected in Beta Cet during our observation. Stellar surface fluxes of the emission of C III and O VI are correlated and decrease rapidly towards the cooler stars, reminiscent of the decay of magnetically-heated atmospheres. Profiles of the C III (977A) lines suggest that mass outflow is underway at T~80,000 K, and the winds are warm. Indications of outflow at higher temperatures (3 X 10^5K) are revealed by O VI asymmetries and the line widths themselves. High temperature species are absent in the M-supergiant Alpha Ori. Narrow fluorescent lines of Fe II appear in the spectra of many giants and supergiants, apparently pumped by H Lyman Alpha, and formed in extended atmospheres. Instrumental characteristics that affect cool star spectra are discussed.Comment: Accept for publication in The Astrophysical Journal; 22 pages of text, 23 figures and 8 table
    • …
    corecore